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SUMMARY

A comparative study of two different incompressible Navier-Stokes algorithms for

solving an unsteady, incompressible, internal flow problem is performed. The first algo-

rithm uses an artificial compressibility method coupled with upwind differencing and a line

relaxation scheme. The second algorithm uses a fractional step method with a staggered

grid, finite volume approach. Unsteady, viscous, incompressible, internal flow through a
channel with a constriction is computed using the first algorithm. A grid resolution study

and parameter studies on the artificial compressibility coefficient and the maximum allow-

able residual of the continuity equation are performed. The periodicity of the solution is

examined and several periodic data sets are generated using the first algorithm. These

computational results are compared with previously published results computed using the

second algorithm and experimental data.

INTRODUCTION

In the field of computational fluid dynamics, it is challenging to obtain accurate re-

suits in a computationally efficient manner. A wide variety of approaches can be employed

when solving a specific problem. This is particularly true of unsteady, incompressible meth-

ods; there are no time derivatives in the continuity equation, yet the velocity field must be

divergence free at every time step. Manipulation of the governing equations must occur in

order to formulate the problem. The current study compares two different incompressible

Navier-Stokes algorithms to solve an unsteady, incompressible, internal flow problem. The

first approach uses the artificial compressibility method introduced by Chorin (ref. 1) cou-

pled with upwind differencing and a line relaxation scheme. The second approach uses a

fractional step method (refs. 2 and 3) with a staggered grid, finite volume method. These

two approaches have been widely used in recent work. As an example, in the 1991 10th

AIAA Computational Fluid Dynamics Conference, a number of incompressible flow papers

which used these methods were presented. A number of authors (refs. 4-9) used the a_ t,fi-

cial compressibility method in their work presented at this conference. An equal number

of authors (refs. 8-13) used the fractional step method as a basis for their formulations.



Both methods have been used to compute the unsteady, viscous, incompressible,
internal flow through a channel with a constriction. This specific problem was chosen
for two reasons: one is the availability of experimental data for the problem; another is
that this problem is geometrically simple but produces complex structures in the flow
field for analysis. The physical applications of this problem include the area of bio-fluids
research. Pulsatile flow through a channel with an obstruction models the phenomena
of arteriosclerosisclosely. This study providesnot only the opportunity to perform code
validation and comparisonwith experimental data, but generatesresultswhich may aid in
a better understanding of the fluid dynamics associatedwith arteriosclerosis.

The current work includes a grid resolution study to determine an appropriate grid
for the flow field analysis. A parameter study was performed on the artificial compress-
ibility coefficient and its effect on solution convergenceand accuracy. The solution was
examined to determine the number of physical time steps neededto obtain a periodic
solution. Solution accuracy and the effect of varying the maximum allowable tolerance
for the divergenceof velocity was investigated. Finally, the work wascomparedwith the
computational data of Rosenfeld(ref. 14) and the experimental results of Park (ref. 15).

The authors wish to thank Dr. Moshe Rosenfeldof MCAT Institute, SanJose, for
his generouscontributions of time and experimental results to this paper.

METHODS

The incompressible,unsteady, Navier-Stokesequations areknown to be particularly
difficult to solve. One of the reasonsfor this difficulty is the absenceof a time derivative
of pressure in the governingequations. Sincethe speedof soundin a truly incompressible
fluid is infinite, the entire pressurefield is affected instantaneously by a disturbance at
any one point in the flow domain. This requires that the numerical algorithm propagate
information through the entire ftow domain during onediscrete time step. Global coupling
of the discretized systemis implied, thus sometype of iterative schemeis usually required
to solvethe equationsin time. The elliptical nature of theseequationscausesthe generation
of time-accurate solutions to be computationally expensive.

Two different computational methods were employedto model the fluid dynamicsof
unsteady, incompressible,pulsatile channelflow: (1) an artificial compressibility method,
and (2) a fractional step method. The fractional step data used for comparison in this
study wasgeneratedseparatelyby Rosenfeld(ref. 14), by the fractional step code,INS3D-
FS (ref. 16). The INS3D-FS code utilizes an integral formulation of the Navier-Stokes
equations and finite volume discretization to solve both steady-state and time-dependent
flows. In this algorithm, the momentum equation is marchedforward using the last known
pressuresto solve for the velocity field. The new velocity field at this point does not
necessarilysatisfy the continuity equation. A Poissonequation in pressureis then solved



to obtain the corrections to the velocity field such that the continuity equation will be

satisfied; thus, the solution is advanced one time step. In practice, the Poisson equation is

iterated until the maximum residual is less than 10 -s, where the residual is the divergence

of velocity multiplied by the volume of the computational cell. A staggered mesh approach

is used with the INS3D-FS code, which removes the need for artificial dissipation.

The code used by the authors to generate solutions was the INS2D code developed by

Rogers (refs. 17 and 18). This code solves the incompressible Navier-Stokes equations in

two dimensional generalized coordinates for both steady-state and time varying flows. The

equations are formulated into a mixed set of hyperbolic and parabolic partial differential

equations using the method of artificial compressibility. In this method, a pseudo-time

derivative of pressure is added to the continuity equation:

Op/Or= -Zv-ff

where p = pressure, v = pseudo-time, _ = velocity, and j3 is the artificial compressibility

constant which controls the propagation of the artificial pressure waves. The convec-

tive terms are differenced using an upwind biased flux-difference splitting method. The

discretized equations are solved using a line-relaxation scheme. This method uses sub-

iterations in pseudo-time on the global system of equations as the mechanism to drive the

divergence of velocity toward zero. In practice, the sub-iterations are terminated once the

maximum divergence of velocity in the continuity equation is reduced below a specified

constant, ¢co,,t. This constant can be much larger than machine zero; for instance, accurate

solutions have been obtained (refs. 17 and 18) using values of ¢cont = 10 -3.

PROBLEM DEFINITION

The physical problem examined in this study was pulsatile flow through a channel

with a constriction. The computational geometry is consistent with the experimental set-

up of Park (ref. 15), and is shown in figure 1. The channel height is h and has been
normalized to unity. The height of the constriction is given by a = 0.57. This is the

distance from the top wall of the channel to the lowest point in the constriction. The

length of the channel upstream of the constriction is given by L_ = 7. The length of

the channel in which the constriction occurs is given by Lc = 4.66, and the downstream

portion of the channel is given by Ld = 15.34. The total length of the channel is given by

Ltotal and is equal to Lu + Lc + Ld = 27.0.

The computational boundary conditions were implemented as follows. For the upper

and lower walls of the channel, no slip conditions were specified. The inflow boundary

to the experimental set-up occurred at 100 channel heights upstream of the constriction.

Since it would be computationally expensive to compute the flow for this entire domain,

the computational inflow boundary was placed at seven channel heights upstream of the
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Figure 1. Physical description of computational geometry.

constriction. Previous work was done by Rosenfeld (reL 14) to determine the appropriate

inflow boundary conditions to match the experimental setup, and this information was

used in the current work. A parabolic profile was imposed at the inflow boundary and the

average inflow velocity was set to match the mass flow from the experimental setup. The

average inflow velocity is periodic and given by the shape function in figure 2.
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Figure 2. Average inflow velocity magnitude versus time for one period.
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This shapeis definedanalytically by

V(t) = U8 0 < t/T < 1/2

V(t) = Us- Upsin(27rt/T) 1/2 < t/T < 1

where U_ is the non-dimensionalized steady component of the average inflow velocity, Up

is the pulsatile component and T represents the period. This waveform was chosen for the

inflow velocity because it approximates the pulses in velocity that blood encounters during

diastole and systole in mammalian circulatory systems and provides realistic conditions

for the modeling of arteriosclerosis.

Associated with this problem, there are several relevant relationships between the

physical parameters which govern this flow.

Ush
Re s --

v

Re8

fP- T

h
St = ---

UpT

hh
up = -stn s

Res is the Reynolds number for the flow, Us is the steady component of the average inflow

velocity, h is the non-dimensionalized height of the channel, and u is the kinematic viscosity

of the fluid. The frequency of the period T is given by fp. The Strouhal number is given by

St, where h is the channel height, and Up is the pulsatile component of the average inflow

velocity. These physical parameters were specified to correspond with the computational

work done by Rosenfeld (ref. 14), and the experimental work done by Park (ref. 15).

The outflow boundary conditions specified in the work by Rosenfeld (ref. 14) were of

the non-reflecting type with the streamwise derivative of velocity set to zero, Ou/Ox = O.

In the present work, a non-reflecting boundary condition was used based on the method

of characteristics to solve for the velocity; the static pressure was specified to be constant.

To compare the computed results from the two algorithms on an equal basis, the

grids used to model this geometry matched the grids used by Rosenfeld (ref. 14). A coarse

mesh was generated with 97 × 21 grid points and clustering near the upper and lower walls

and in the regions where large gradients were expected, resulting in 70 percent of the grid

points being clustered in the vortical region downstream of the constriction. From this

mesh, medium, fine, and ultra-fine grids were generated by doubling the points in each of

the i and j directions, as defined in figure 1, for each level of refinement. This resulted in

four grids with an increasing number of grid points: a coarse grid with 97 × 21 grid points,

a medium grid with 193 × 41 grid points, a fine grid with 289 × 61 grid points, and an

ultra-fine grid with 385 × 81 grid points. Figure 3 shows part of the coarse mesh near the

constriction.
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A baselinecasewas first calculated from which further parametric studies wereper-
formed. This caseshall be referred to as Case I, and the constants specified are: the
Reynolds number Rcs = 131.9, the depth of the constriction a/h = 0.57, the Strouhal

number St = 0.42, the pulsatile component of the average inflow velocity Up = 1.217,

and the period T = 1.957 seconds in physical time.

Figure 3. 97 x 21 coarse mesh in the area of the constriction.

COMPUTED RESULTS

First, a grid resolution study was performed using all four grids and the parameters

of Case I. To obtain a starting solution for each of the grids, a converged steady-state

solution was obtained. The calculation was restarted with time-varying pulsatile inflow

from the steady-state solution and run out for four periods with a value of fl = 50,000

and At = 0.03914. Grid convergence was analyzed using two physical parameters: the

distribution of skin friction on the bottom wall of the channel, and the static pressure at

the centerline of the channel. As these are laminar calculations, the skin friction coefficient,

Cf, is normalized by the Reynolds number and is given by

Tw

C_ - I/2pU 2

where r,_ is the shear stress at the wall and p is the density. The skin friction coefficient

and pressure at the centerline of the channel are shown at the beginning of the period,

t/T = 0.0, for all four cases shown in figures 4(a)-(b) and 5(a)-(b). From the figure, it is

apparent that the solutions are close to being grid independent for the two finest meshes,
as the solution from the 289 × 61 mesh is close to the solution from the 385 x 81 mesh.

However, 30 percent less CPU time is needed to generate a solution for a 289 × 61 mesh

than for the 385 × 81 mesh. This geometry produces a solution with many strong flow

gradients. Flow is produced which is continuously reversing throughout the channel which

creates strong streamwise pressure gradients and strong vorticity gradients near the walls.

A grid with relatively fine spacing is needed to adequately capture all of the important

flow physics which are inherent in this problem. As a result, the 289 x 61 grid was chosen

to use in the remainder of the calculations in the study. Rosenfeld (ref. 14) performed

a grid resolution study and determined that a nearly grid independent solution was also

obtained with the fractional step method for the 289 × 61 grid.

An in-depth examination of the skin-friction and pressure data, shown in figures 4(b)

and 5(b), reveals several "spikes" in the INS2D solution near the beginning and end of
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Figure 4(a). Effect of grid resolution on skin friction at the lower wall.
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Figure 4(b). Close-up of figure 4(a), in the area of the constriction.

the constriction. In these figures, the magnitude of spikes appears to diminish as the grids

become more refined. The magnitude of the spikes in the solutions was also affected by

the clloice of fl, the artificial compressibility coefficient, used in running the INS2D code.

This dependence on/3 is discussed in the following section.

A parametric study on the effects of different values of fl on the speed of solution

convergence was performed. The values of fl used ranged from 50,000 to 0.1 by an order of

magnitude for each case. When running the INS2D code, the use of different values of/3
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Figure 5(a). Effect of grid resolution on centerline pressure.
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Figure 5(b). Close-up of figure 5(a), in area of constriction.

will generate basically the same solution with minor differences, but will greatly affect the

speed of convergence and therefore the amount of CPU time needed to obtain a solution.

This occurs because the number of sub-iterations that are calculated in pseudo-time in

the unsteady mode are either increased or decreased depending on how a specific value of

propagates information within a specific geometric configuration. Figure 6 shows the

effect of different values of/3 on CPU time; the data from these solutions is shown in fig-

ures 7(a)-(b) and 8(a)-(b). The use of a large /3 greatly enhances the speed at which

the unsteady solution converges for this geometry, as shown in figure 6. However, in

figures 7(a)-(b) and 8(a)-(b), which show the skin-friction coefficient at the lower wall and
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Figure 7(a). Effect of fl on skin friction at the lower wall at tiT = 0.5.

pressure at the centerline of the channel at tiT = 0.5, the relative smoothness of the

solution is adversely affected by the use of the large ft. The pressure appears to be more

adversely affected by the use of a large fl than the skin-friction. Since the pressure term
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in the continuity equation is scaled by fl, small spikes in the velocity field produce large

spikes in the pressure field. A value of _ = 103 was chosen for use in the remainder of

the study. This value produced reasonably fast convergence to a periodic solution and

minimized the magnitude of the spikes in the solution.
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Figure 7(b). Close-up of figure 7(a), in the area of the constriction.

Several alternatives can be utilized to reduce the magnitude of the spikes in the

solutions of the large fl cases. Since the grid resolution study, shown in figures 4(b)

and 5(b), shows that the use of a finer grid reduces the magnitude of the spikes, refining

the grid in the area of the constriction could produce a smoother solution with the use

of a larger ft. This could be done without increasing the number of points in the grid by

clustering the existing points in the constriction region. Also, smoothing of the grid was

performed by fitting a cubic spline to the grid lines lengthwise at the beginning and end

of the constriction. This smoothing did reduce the magnitude of the spikes for a case of

fl = 50,000, as shown in figures 9(a)-(b). However, since this is a validation study with the

results of Rosenfeld (ref. 14), the remainder of this study was performed with the exact

grids used in the work done by Rosenfeld (ref. 14) and not the smoothed grids.

The use a TVD limiting scheme is another method which may be employed to re-

duce the magnitude of the spikes when running the INS2D code with a large ft. Using a

TVD limiting scheme ,'ith the upwind differencing may add enough dissipation to smooth

out these spikes, yet may also reduce the accuracy of the solution. Thus, the preferred

correction for this case would involve refining the affected region of the grid.

The issues of periodicity and convergence of the solution were also examined in this

study. When running a time dependent case with the INS2D code, a convergence critera
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Figure 8(b). Close-up of figure 8(a), in the area of the constriction.

must be specified for the sub-iterations. The parameter e_ont, the residual of the continuity

equation, is used as the tolerance for the maximum divergence of velocity in the entire

11



.

_

_

0 10 20

x/h

Figure 9(a). Smoothed versus non-smoothed grid for B = 50,000.

6.0"

QJ

•_ 5.5

5.0

_ 4.5-

4.0

:i

....................................................... . ............................................................._-7..........I...............................................

.4 i/ "

_---,: .......-'"\ i: !

................. .............................'/! ......................":..........."......................I
5 6 7 8

x/h

Figure 9(b). Close-up of figure 9(a), in the area of the constriction.

flow field; once the tolerance is reached, the sub-iterations are terminated and the code

continues on to the next time level. The maximum divergence of velocity at each grid point

was determined using a third order differencing scheme. A parameter study was performed

to determine the appropriate value for econt which would generate an accurate periodic

solution for the least amount of computer time. The value of econt was varied by an order

of magnitude for four cases from 10 -1 to 10 -4 . Solutions were generated for each value of

econt for 10 consecutive periods. The solutions were checked for periodicity by taking the
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root mean square (RMS) of the difference over each grid point of the dependent variables

between subsequent periods. A direct correlation exists between the decrease in these RMS

values and the solution periodicity. Figure 10 shows the effect of ¢cont on the periodicity

of the solutions. As shown in figure 10, running the INS2D code with a value of ¢cont

of 10 -3 produces the solution with the smallest RMS value consistently throughout the

ten periods. Figure 11 shows the same data plotted against CPU time instead of periods.

Each order of magnitude decrease in _co,t produced a factor-of-two increase in the number

of sub-iterations within one time step, and therefore increased the amount of CPU time

needed to obtain a solution. Values of ¢co,,t of 10 -3 and 10 -4 generated the more periodic

solutions, but a value of e¢o,_t = 10 -3 produces a smaller RMS error than ¢cont = 10-4;

this translates to faster convergence to periodicity, while using approximately 40 percent

less CPU time. The value of Ccont of 10 -3 was used in the remainder of the study.
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Figure 10. Effect of econt on periodicity: root mean square of change in dependent variables

versus period.

Once the basic operational parameters had been established for running the INS2D

code with this configuration, two cases were run to generate data which were used to

compare with Rosenfeld's (ref. 14) computational data and Park's (ref. 15) experimental

data. The geometry remained the same for the two cases, but the inflow conditions vary

and are given in table 1.
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Table 1. Parameters used for comparison study

Parameter Case I Case II

Res 131.9 138.3

a/h 0.57 0.57
T 1.957 1.368

St 0.42 0.42

Us 1.5 1.5

Up 1.217 1.740

A converged periodic solution was generated for both of these cases. Data was saved

at each time step in the period for comparison with Rosenfeld (ref. 14) and Park (ref. 15).

Figures 12(a)-(d) show the coefficient of skin friction on the lower wall for both the current

results using the INS2D code and Rosenfeld's (ref. 14) work using the INS3D-FS code, at

various times during the period for Case I. A comparison of the computational data shows

that the solutions appear to match with respect to location of skin friction maxima and

minima. However, the data generated using the INS3D-FS code has a larger fluctuation

in skin friction values in the region just behind the constriction than the data generated

using the INS2D code. This correlates to stronger vorticity in these regions in the solution

generated by the INS3D-FS code.
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Figure 12(a). Comparison of INS2D and INS3D-FS results: computed skin friction at the

lower wall at tiT = 0.24.
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Figure 12(b). Comparison of INS2D and INS3D-FS results: computed skin friction at the

lower wall at t/T = 0.5.

The INS2D code was also used to compute instantaneous streamlines for Case I.

These streamlines are compared with streamlines generated using the INS3D-FS code for
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lower wall at t/T = 0.74.
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Figure 12(d). Comparison of INS2D and INS3D-FS results: computed skin friction at the

lower wall at t/T = 1.0.

Case I and are shown at 0.1T intervals throughout the period in figures 13 and 14. The

streamline plots illustrate the same phenomena as the skin friction plots, that the results

generated by the INS3D-FS code have larger vortical structures behind the constriction
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Figure 13. INS2D results: streamline data at 0.1T intervals from 0.1T to 1.0T.

throughout the entire period, evenduring the pulse in the inflow averagevelocity, asshown
in frame 7 at 0.7T in figures 13 and 14, when most of the vortical structures are washed
out.

Another easily quantified physical result was the location of the center of the
B-vortex. The B-vortex is defined to be the vortex along the bottom wall of the channel;
it grows immediately behind the end of the constriction and is sheddownstream. The lo-
cation of this vortex wasexaminedasfunction of time and the results werecomparedwith
the INS3D-FS code results and the experimental results for both CaseI and CaseII. The
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Figure 14. INS3D-FS results: streamline data at 0.1T intervals from 0.1T to 1.0T.

location of the center of the B-vortex can be found by plotting the instantaneous stream-

lines with a fine increment of the contour lines. This is analogous to the measurement of

the experimental vortex location, which was measured using flow visualization pictures.

Figures 15 and 16 show the results given by Rosenfeld (ref. 14), the computed results from

this study, and the experimental results. There is good agreement between the computed

results by the INS3D-FS code and the INS2D code. The agreement with experimental

data is fairly good for tiT < 2.0 for the two cases, but declines in quality for tiT > 2.0.

Rosenfeld suggested that this disparity occurs as a result of the interpretation of the

experimental results (ref. 14). The computed streamline traces represent instantaneous

streamlines. The experimental streamline cannot be visualized instantaneously due to the
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Figure 16. Location of B-vortex versus period: Case II, Re = 138.3.

exposure time of the camera taking the streamline data. The estimation of actual physical

parameters may affect the comparison of experimental and computed results. The effect

of the error tolerances on the experimental results is unknown.
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Another area of comparisonis the computing time neededto obtain a periodic so-
lution. Rosenfeld (ref. 16) reports the INS3D-FS code requires from 0.3 - 1.0 × 10-3
CRAY-XMP CPU sec/mesh-point/time-step, depending on the number of iterations re-
quired for the convergenceof the Poissonsolver. To obtain a periodic solution, the INS2D
code required 0.24 x 10-3 CRAY-YMP CPU sec/mesh-point/time-step for CaseI, and
0.32x 10-3 CRAY-YMP CPU sec/mesh-point/time-step for CaseII. Thesecasesrequired
about 12sub-iterations per physical time step. For the purposeof comparison, thesecases
werecomputed using the samesizephysical time stepsand the exact samegrids that were
used in the study by Rosenfeld(ref. 14). Overall, the two different algorithms require the
sameamount of computing time to obtain a periodic solution.

CONCLUSIONS

A general study to compare and contrast two different algorithms for unsteady, in-
compressibleNavier-Stokesequations was performed. This was accomplishedby using
the INS2D codeto generatecomputational results for comparisonwith the computational
results of Rosenfeld(ref. 14) and the experimental results of Park (ref. 15). The compu-
tational work doneby the authors included severalparameter studies and the generation
of converged,periodic solutions. First, a grid resolution study was performed and an
appropriate grid for the constricted channel configuration which sufficiently captured the
important flow physics wasgenerated. It wasnecessaryto choosea finely spacedgrid with
289 × 61 grid points in order to compute significant flow structure details which werenot
adequatelyresolvedby the coarsergrids. In addition, the effect of the artificial compress-
ibility coefficient, _, on the speedof convergenceand the smoothnessof the solution was
examined. For this configuration, a large value of _ increasedthe speedof convergencebut
added "spikes" to the solution; asthe valueof _ wasincreased,the magnitude of the spikes
in the solutions increased. Several ideaswere generatedto reduceor eliminate the spikes
in the solution. Grid refinement wasperformed by fitting a cubic spline to the streamwise
grid lines in the area near the constriction. This grid refinement significantly reduced the
magnitude of the spikes in the solution. Next, a study was performed to determine the
number of periods the solution must be run out in order to achieveperiodicity. After four
pulsatile inflow periods, the flow physics in the solution becameperiodic. The effect of
varying the maximum allowable tolerance for the divergenceof velocity on solution accu-
racy was examined. Severalcaseswere run with different valuesof this parameter, eco,,t,

and the effect of these different values on accuracy and the amount of CPU time needed

to generate a solution was determined. As e¢ont was reduced, the solution became more

accurate, but also more computationally expensive to compute. In this study, a crossover

point occurred at which further reducing the value of eco,,t did not increase the accuracy

of the solution, but was computationally more expensive. Finally, two converged, periodic

solutions were generated and data was saved at each time step in the period for comparison

with the computational results of Rosenfeld (ref. 14) and the experimental results of Park

(ref. 15).
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In comparing the computational results generated by Rosenfeld (ref. 14), using the

INS3D-FS code, and the current work, using the INS2D code, it appears that the solutions

generated by the INS3D-FS code contain stronger vorticity than those generated by the
INS2D code. One area where this is evident is in the skin friction data. The skin friction

data shown in figures 12(a)-(d) shows similar locations of the fluctuations in skin friction

throughout the period. However, the magnitude of the fluctuations is generally larger in

the solutions generated by Rosenfeld (ref. 14) using the INS3D-FS code, which correlates to

stronger vorticity in these solutions. Due to a lack of detailed experimental measurements,

it is difficult to determine whether the solutions generated by INS3D-FS or INS2D are

more correct in terms of flow physics. This dissimilarity is most likely a result of the

differencing schemes used by the two methods for the convective terms. The INS3D-FS

code uses second-order central differencing on a staggered grid which does not add any

artificial dissipation. The convective terms in the INS2D code are differenced using a

third-order upwind scheme which does add dissipation. This additional dissipation may

account for the difference in vorticity found in the two solutions in the region behind the

constriction.

The differencing schemes used for the convective terms comprise only one exam-

ple of where the two algorithms are distinct, as the overall approaches used in the two

methods are vastly different. The common thread in the two algorithms is the starting

point of using the incompressible Navier Stokes equations. Starting from these equations,
the two methods follow radically different paths. The INS3D-FS code uses an integral

formulation of the equations, while the INS2D code uses a differential formulation. An-

other difference in the two methods is the degree of coupling of these equations. In the

current method, the INS2D code, the equations are fully coupled, whereas the equations

used in the INS3D-FS code are only partially coupled through the pressure equation. The

divergence of velocity criteria is satisfied in two completely different ways by the two meth-

ods. The use of a staggered grid approach by the INS3D-FS code, versus a non-staggered

grid approach by the INS2D code, included with the use of different implicit schemes and
dissimilar differencing schemes, all contribute to the distinctness of the two methods. How-

ever, despite all the dissimilarities found in the two methods, the two algorithms generate

very similar results, as shown in figures 15 and 16, which illustrate the location of the

B-vortex and compare the computed results with experimental data. The two algorithms

also generate very similiar streamline plots throughout the period. Overall, the agreement

between the computed results of Rosenfeld (ref. 14) and the current work is excellent,

and the two algorithms require similar amounts of computing time to obtain a periodic

solution.

FUTURE WORK

One area which could be examined is the degree of robustness of the two algorithms.

Future work could include checking the robustness of the two codes for larger physical time

steps. This could be accomplished by continually increasing the size of the time steps by
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a factor of two until the codes suffer a loss in stability. Another area which merits further

investigation is grid sensitivity. As the two algorithms employ greatly contrasting spatial

differencing schemes, examining the effects of skewness, discontinuities, and singularities

in different grid topologies could provide interesting insights into algorithm characteristics.

An additional way of examining the robustness of the two codes would be to continually in-

crease the Reynolds number while monitoring the physics as well as the numerical stability

of the algorithms.
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